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We study the continuous absorbing-state phase transition in the contact process on the Voronoi-Delaunay
lattice. The Voronoi construction is a natural way to introduce quenched coordination disorder in lattice
models. We simulate the disordered system using the quasistationary simulation method and determine its
critical exponents and moment ratios. Our results suggest that the critical behavior of the disordered system is
unchanged with respect to that on a regular lattice, i.e., that of directed percolation.
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I. INTRODUCTION

Nonequilibrium phase transitions between an active �fluc-
tuating� state and an inactive, absorbing state arise frequently
in interacting particle models �1�, chemical catalysis �2�, in-
terface growth �3�, epidemics �4�, and related fields. In spa-
tially extended systems, exemplified by the contact process
�5�, such transitions are currently of great interest, which has
been heightened by recent experimental confirmations of
absorbing-state phase transitions in a liquid crystal system
�6� and in a sheared colloidal suspension �7�. Much of this
work is focused on issues of universality, aimed at character-
izing the critical behavior of these models in terms of uni-
versality classes �1,8–10�. It has been conjectured �11,12�
that models with a positive one-component order parameter,
short-range interactions, and absence of additional symme-
tries or quenched disorder belong generically to the univer-
sality class of directed percolation �DP�, which is considered
the most robust universality class of transitions to an absorb-
ing state.

The contact process �CP� is one of the simplest and most
studied models belonging to the DP universality class. Of
particular interest is how spatially quenched disorder affects
its critical behavior �13�. Quenched disorder, in the form of
impurities and defects, plays an important role in real sys-
tems and may be responsible for the rarity of experimental
realizations of DP �14�. Quenched disorder in the contact
process on a regular lattice has been studied in the forms of
random deletion of sites or bonds �15–17� and of random
spatial variation of the control parameter �18–20�. All these
studies report a change in the critical behavior of the model.
These findings are consistent with Harris’ criterion �21�,
which states that quenched disorder is a relevant perturbation
if

d�� � 2, �1�

where d is the dimensionality and �� is the correlation length
exponent of the pure model. �In DP this inequality is satisfied
in all dimensions d�4, since ��=1.096 854�4�, 0.734�4�,
and 0.581�5�, for d=1, 2, and 3, respectively �22–24�.� Some

controversy remains whether the exponents change continu-
ously with degree of disorder �16,25� or whether they change
abruptly to the values in the strong disorder limit correspond-
ing to the universality class of the random transverse Ising
model, as suggested by Vojta in a recent work �19�.

Harris’ criterion determines the relevance of disorder in
the form of independent random dilution �of sites and/or
bonds� in a regular lattice. A somewhat different situation
arises when the underlying graph is not periodic, as is the
case in a deterministic aperiodic structure, or in a graph with
a random neighbor structure such as the Voronoi triangula-
tion. To determine the relevance of disorder in these cases,
the following heuristic extension of Harris’ criterion was pro-
posed by Luck �26�: Consider a spherical patch � with ra-
dius R on a given realization of a graph. The patch encloses
a number B�R� of vertices, which scales as B�R��Rd. The
average coordination number in the patch is given by

J�R� =
1

B�R� �
i��

qi. �2�

Let the fluctuation of the coordination number around its
expected value, Jo= q̄, decay as

�R�J� =
��J�R� − Jo�	

Jo
� �B�R�	−�1−�� � R−d�1−��, �3�

when R→�. Here, � is defined as the wandering exponent
of the triangulation. Nearby the critical point �
��
−�c� /�c=0, the fluctuations �	�J� of the average coordina-
tion number in a correlation volume scale as

�	�J� � 	�
−d/2 � ���d/2, �4�

since 	���−��. Considering a large correlation volume, R
�	�, the resulting shift of the critical point, induced by the
fluctuations �	 in a correlation volume, is proportional to
�d���1−���var�qi�, where var�qi�= �qi

2	− �qi	2. Then, in order
that the regular critical behavior remain unchanged, these
fluctuations should die out when �→0, which is true if �
does not exceed a threshold value given by*Corresponding author. mancebo@fisica.ufmg.br
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�c = 1 −
1

d��

. �5�

Thus, in principle, the Harris-Luck criterion permits one to
predict the effects of quenched disorder in models defined on
structures such as quasicrystals or even random lattices.
�Note that for independent dilution, �=1 /2, and Luck’s ex-
pression reduces to the Harris criterion.�

In this work we investigate whether disorder in the form
of a quenched Poissonian coordination disorder alters the
critical behavior of the contact process by studying the criti-
cal behavior of the process on a Voronoi-Delaunay �VD� type
random lattice �27,28�. The VD lattice represents a natural
way of introducing quenched coordination disorder in a lat-
tice model and also plays an important role in the description
of idealized statistical geometries such as planar cellular
structures, soap throats, etc. �27�. In this lattice, the sites are
spatially distributed following a Poisson distribution, and the
coordination number q varies randomly, with 3
q�� and
q̄=6 in the infinite-size limit. Our results suggest that coor-
dination disorder does not change the critical behavior of the
contact process.

The balance of this paper is organized as follows. In the
next section we review the definition of the contact process
and detail construction of the VD lattices as well the simu-
lation methods used. In Sec. III we present our results and
discussion; Sec. IV is devoted to our conclusions.

II. MODEL AND METHOD

Consider a bounded domain � in a d-dimensional space
in which N nodes are randomly placed with uniform distri-
bution. The Voronoi diagram of this set is a subdivision of
the domain into regions Vi �with i=1,2 , . . . ,N�, such that any
point in Vi is closer to node i than to any other node in the
set. Figure 1�a� shows a patch of a Voronoi diagram. The
points whose cells share an edge are considered neighbors.
The dual lattice, obtained by linking neighboring sites is the
Voronoi-Delaunay network, exemplified in Fig. 1�b�. One of
the characteristics of the dual lattice is that its local coordi-
nation number varies randomly, with the distribution shown
in Fig. 2. In this work, we take periodic boundary conditions,
i.e, the domain � has a toroidal topology. In order to con-
struct the lattices we follow the method of Ref. �29�. For

simplicity, we express the length L of the domain � in terms
of the size of a regular lattice L=�N.

The CP, originally introduced as a ‘‘toy model’’ for epi-
demic spreading �5�, is a stochastic interacting particle sys-
tem defined on a lattice, with each site either occupied
��i�t�=1�, or vacant ��i�t�=0�. Transitions from �i=1 to �i
=0 occur at a rate of unity, independent of the neighboring
sites. The reverse transition is only possible if at least one of
its neighbors is occupied: the transition from �i=0 to �i=1
occurs at rate �r, where r is the fraction of nearest neighbors
of site i that are occupied; thus the state �i=0 for all i is
absorbing. �� is a control parameter governing the rate of
spread of activity.�

In the simulation we employ the usual simulation scheme
�1�, in which annihilation events are chosen with probability
1 / �1+�� and creation with probability � / �1+��. In order to
improve efficiency, the sites are chosen from a list of cur-
rently occupied sites. In the case of annihilation, the chosen
site is vacated, while, for creation events, one of its q
nearest-neighbor sites is selected at random and, if it is cur-
rently vacant, it becomes occupied. The time increment as-
sociated with each such event is �t=1 /Nocc, where Nocc is
the number of occupied sites just prior to the attempted tran-
sition.

In the studies reported here we sample the quasistationary
�QS� distribution of the process �that is, conditioned on sur-
vival�, which has proven a very useful tool in the study of
processes with an absorbing state �1,30,31�. For this purpose,
we employ a simulation method that yields quasistationary
�QS� properties directly, the QS simulation method �32�. The
method is based in maintaining, and gradually updating, a set
of configurations visited during the evolution; when a tran-
sition to the absorbing state is imminent the system is instead
placed in one of the saved configurations. Otherwise the evo-
lution is exactly that of a conventional simulation.

III. RESULTS AND DISCUSSION

We performed extensive simulations of the CP on
Voronoi-Delaunay random lattices of L=20,40, . . . ,640, us-

FIG. 1. �Color online� �a� A patch of a Voronoi diagram. �b� The
corresponding dual lattice to the diagram shown in �a�.
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FIG. 2. Degree distribution P�q� of the Voronoi-Delaunay lat-
tice, for system size L=2560.
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ing the QS simulation method. Each realization of the pro-
cess is initialized with all sites occupied, and runs for at least
108 time steps. Averages are taken in the QS regime, after
discarding an initial transient which depends on the system
size. This procedure is repeated for each realization of disor-
der �for each size studied, we performed averages over 200–
300 different lattices�.

In Fig. 3 we show the quasistationary density � as a func-
tion of the control parameter � for several values of L. We
observe, as expected, a continuous phase transition from an
active to an absorbing state. Since, due to topological con-
straints, the Voronoi-Delaunay lattice possesses q̄�6, the
value of the critical point is shifted from �c=1.648 77�3�
�33� �regular square lattice� to �c=1.542 66�4� �the increase
in q facilitates creation�. This is very close to the critical
value, �c=1.547 80�5�, for the regular triangle lattice, ob-
tained using the same methods as described below. It is no-
table that the critical value of the disordered system is about
0.3% smaller than that of the regular lattice with the same

average connectivity. Figure 4 shows how the QS density of
active sites varies with the coordination number q.

At the critical point we find that the quasistationary den-
sity decays as a power law, ��L−�/��, as shown in Fig. 5.
Our simulation data follow a power law with the exponent
� /��=0.791�7�, while the value for DP in two spatial di-
mensions is 0.797�3� �33�.

Another important quantity is the lifetime of the QS state,
. In QS simulations we take  to be the mean time between
successive attempts to visit the absorbing state. Figure 6
shows that at the critical point, the lifetime also follows a
power law, �Lz, with z=� /��=1.78�3�, as compared with
the literature value of 1.7674�6� for the DP class �33�.

Complete characterization of a nonequilibrium universal-
ity class requires the determination of at least three indepen-
dent critical exponents. To this end we perform initial decay
studies on large systems, starting with a fully occupied lat-
tice. While the CP with random dilution exhibits a logarith-
mic relaxation �16�, on the VD lattice we observe a clear
power-law decay. Finite size scaling in this case predicts that
�� t−�. A least-squares fit for the data shown in Fig. 7 yields
�=0.453�9�, in very good agreement with the standard value
of �=0.4523�10� for DP �33�.
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FIG. 4. QS density of active sites ��q� vs �, for sites with
q=3,4 , . . . ,10, from bottom to top. Circles: average over all sites.
System size L=160.
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FIG. 5. QS order parameter � vs system size L at criticality
��=1.542 66�.

1 1.2 1.4 1.6 1.8

λ
0

0.1

0.2

0.3

0.4

ρ

FIG. 3. Quasistationary density of active sites � as a function of
the control parameter �. System sizes: L=20, 40, 80, and 160, from
top to bottom.

4 4.5 5 5.5 6 6.5 7

ln L
8

10

12

14

ln
τ

FIG. 6. Critical lifetime of the QS state  vs L.
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Moment ratios �or reduced cumulants� represent an alter-
native method for identifying the universality class of a con-
tinuous phase transition �34–36�. Here we analyze the criti-
cal moment ratio m= ��2	 / ��	2. This quantity is analogous to
Binder’s reduced fourth cumulant �37� at an equilibrium
critical point: the curves m�� ,L� for various L cross near �c
�the crossings approach �c�, so that m assumes a universal
value mc at the critical point, as can be seen in Fig. 8. In this
case, our data yield a universal value of mc=1.328�6�, again
in very good agreement with the best known value for the CP
on a regular square lattice, mc=1.3257�5� �34�.

In summary, our results reveal that the absorbing phase
transition of the contact process defined on the Voronoi-
Delaunay random lattice belongs to the directed percolation
universality class. These results are somewhat surprising,
since the wandering exponent for these lattices was numeri-
cally evaluated in an extensive work by Janke and Weigel
�38�, who found that �=1 /2, i.e., the relevance criterion for
such lattices reduces to the usual Harris criterion, Eq. �1�.

In the equilibrium context the Harris-Luck criterion has
been verified numerically on random latices in several mod-
els, such as the Ising model �39,40� and percolation �41�.
However, Monte Carlo simulations for the q=3 Potts model
�42� as well for the Ising model in 3D �43,44� and for the
spin-3 /2 Blume-Capel model �45� yield results that contra-
dict the relevance threshold given by the Harris-Luck crite-
rion. Simulation results for nonequilibrium models, viz. the
majority-vote model on a random lattice �46�, also appear to
contradict this relevance criterion.

In Refs. �38,44� it is suggested that Voronoi disorder ap-
pears not to alter the critical behavior because it is intrinsi-
cally weak, and that the usual hallmarks of quenched disor-
der would in fact manifest themselves in larger systems. In
order to test this hypothesis, we compare in Fig. 9 the sur-
vival probability Ps �starting with a fully occupied lattice� of
the CP on the VD lattice and on a regular �square� lattice
with weak dilution. It is known that the diluted CP exhibits
activated disorder �19�, due to emergence of favorable re-
gions, leading to logarithmically slow dynamics �16�. We
find that while in the CP on the VD lattice the survival prob-
ability decays exponentially �as in the ordinary contact pro-
cess�, in the diluted CP the behavior is clearly different.

Notice that the effect of the “rare regions� is clearly vis-
ible for the system sizes used here, even for the smallest
dilution �2%�: the decay of the survival probability is clearly
slower than exponential. On the square lattice with dilution
x�1, the variance of the connectivity var�q��4x, so that
var�q��0.08 for dilution 0.02. This is less than 5% of that
for the VD lattice, where var�q�=1.779�2�. We also should
mention that the effects of quenched disorder in CP are
stronger than in the three-dimensional Ising model: in the
latter, quenched disorder provokes a difference in the second
digit in the exponent � �47�, while for models in the DP class
even weak disorder changes the critical dynamic properties
drastically �48�.

FIG. 7. �Color online� Decay of the order parameter starting
from a full lattice of size L=2560. �=1.5428, 1.5427, and 1.5426,
from top to bottom.
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FIG. 8. �Color online� Quasistationary moment ratio m vs ln L,
for �=1.542 56, 1.542 60, 1.542 64, 1.542 68, and 1.542 80, from
top to bottom. System size: L=640. Inset: Quasistationary moment
ratio m vs �, system sizes: L=20, 40, 80, and 160.

FIG. 9. Survival probability vs time, in the critical CP on a
Voronoi lattice �solid line�, and for the critical CP on a square lattice
with random dilution of 2% �dotted� and 5% �dashed�. System
sizes: L=640 �left curves� and L=1280 �right�.
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IV. CONCLUSIONS

We performed large-scale simulations of the contact pro-
cess on a Voronoi-Delaunay random lattice, which exhibits
quenched connectivity disorder in the model. Our results
suggest that this kind of disorder does not alter the DP char-
acter of the transition, in contradiction with the Harris-Luck
criterion. Given the large systems sizes and long simulation
times used, it appears unlikely that the system will eventu-
ally cross over to non-DP scaling. Thus it remains an open

question why an argument of the Harris-Luck type is not
applicable in some cases. Our results also reveal that the DP
universality class may be even more robust than asserted in
the usual DP conjecture, in the sense that not all kinds of
quenched disorder are relevant perturbations.
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